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1. Introduction

Time-dependent buoyant convection in an enclosure,

induced by the periodically-varying boundary con-

ditions, has attracted attention in recent years. An im-

portant task is to describe the responses of buoyant

¯uid system to the oscillatory thermal boundary con-

ditions. One example is the air-conditioning system for

a room; the thermal load often changes periodically on

a daily basis. Of great signi®cance is the existence of

resonance. The reports by Lage and Bejan [1] and

Antohe and Lage [2], among others, demonstrated that

the buoyancy-driven convective system resonates to

certain discrete frequencies of the pulsating heat ¯ux at

the boundary wall. Under resonance, the amplitude of

the ¯uctuating total heat transfer rate through the ver-

tical mid-plane of the cavity is shown to be maximized.

These accounts provided a theoretical estimation of

the peak resonance frequency by matching the period

of the pulsating heat ¯ux at the wall to the period of

the system-wide circulation (¯ow wheel) of the

enclosed ¯uid. The subsequent experimental e�orts

[3,4] established that the resonance frequency thus

obtained was in order-of-magnitude agreement with

the measurements.

In related endeavors, Kwak and Hyun [5] and Kwak

et al. [6,7] argued that resonance is expected to occur

when the internal gravity waves are excited. Kwak et

al. [6,7] ascertained that the resonance frequency calcu-

lated by using the basic internal gravity mode was in

close agreement with the numerical solutions to the

Navier±Stokes equations.

It is noted that all of the previous studies invoked

the assumption of a Boussinesq ¯uid, in which a linear

density±temperature relationship is stipulated. How-

ever, if the temperature range of the system straddles

the temperature TM at which the density of the ¯uid

reaches the maximum, the conventional Boussinesq-

¯uid assumption has to be abandoned. For example,

for water, the density±temperature relationship in the

vicinity of TM (33.988C) can not be modeled by a lin-

ear function.

In the present note, numerical investigations are

made of the response of ¯uid in a square cavity when

the temperature at one vertical wall oscillates about

TM under the non-Boussinesq-¯uid approximation.

The crux is that, when the wall temperature oscillates

about TM at frequency o, the corresponding density at

the wall oscillates e�ectively at frequency 2o, since the

density, being maximum at TM, decreases as the tem-

perature T deviates from TM both for T > TM and T <
TM: Consequently, it will be shown that resonance is

anticipated when the basic internal gravity mode Ni is

matched to o as well as the e�ective forcing frequency

2o: This is in contrast to the case of a usual Boussi-
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nesq-¯uid in which resonance is seen when Ni is
matched to o:

2. The model and numerical computations

A square cavity, ®lled with a ¯uid, is sketched in
Fig. 1. The top and bottom horizontal walls are insu-

lated. The temperature TC at the cold left vertical wall
at X � 0 is constant. The temperature TH at the hot
right vertical wall at X � L varies sinusoidally in time,

TH�TH � DT 0 sin ft, in which the cycle-averaged value
TH � TC � DT, DT > 0, and the amplitude and fre-
quency of oscillation are, respectively, DT 0 and f. In
the present problem setup, TH is equal to the density±

maximum temperature TM: In accordance with the
suggestion of Moore and Weiss [8], in the vicinity of
TM, a parabolic function linking density and tempera-

ture is selected:

r � rM

�
1ÿ b�Tÿ TM � 2

�
�1�

In the case of water, the error associated with Eq.
(1), with b � 8:0� 10ÿ6 (8C)ÿ2, and TM � 3:988C, is

smaller than 4% from 0 to 88C, and the temperature
range of the present problem is supposed to lie within
these bounds. The other physical properties of the

¯uid are taken to be constant at TM:
The governing time-dependent Navier±Stokes

equations incorporating Eq. (1), in properly non-
dimensionalized form, were given previously (e.g., in

Kwak et al. [9]) and, due to page limitations, they are
not reproduced here.
The principal non-dimensional quantities are de®ned

as

y � Tÿ TC

�TH ÿ TC

, e � DT 0

�TH ÿ TC

, o � f

N
, �2�

where e and o are non-dimensional amplitude and fre-
quency of temperature oscillation at the sidewall, re-

spectively.
The Rayleigh and Prandtl numbers are de®ned as

Ra � bg
ÿ

�TH ÿ TC

� 2
L3

nk
; Pr � n

k
, �3�

where n and k are kinematic viscosity and thermal dif-

fusivity, respectively.
It is noted that time is made dimensionless by refer-

ring to the Brunt±Vaisala frequency N based on the

temperature contrast � �TH ÿ TC), i.e.,

N �
"
bg
ÿ

�TH ÿ TC

� 2
L

#1=2

� �RaPr�
1=2k

L 2
�4�

As easily understood, the internal gravity waves are
characterized by the prevailing buoyancy, which is
depicted by the Brunt±Vaisala frequency, expressed in

Eq. (4). Therefore, the nondimensionalization of time
by using 1=N is a natural choice, and this led to a suc-
cessful identi®cation of the resonance frequency in [5±
7].

The ®nite volume method was used to secure nu-
merical solutions to the governing equations, following
the procedures of SIMPLER algorithm [10]. The

QUICK scheme [11] was utilized to discretize the non-
linear advective term. The speci®cs of the numerical
techniques were amply discussed in many prior publi-

cations [5]. Most of the calculations were conducted by
deploying a mesh network of (62 � 52) staggered grid
points in the (x±z ) domain. The grid and time-step
were varied for repeated calculations of several exemp-

lary ¯ows of Nishimura et al. [12] and Kwak and
Hyun [5], and the computed results for Nu were
mutually consistent within an accuracy of 1%.

3. Results and discussion

For all the results reported here, Ra � 107, Pr �
11:573, Ar � 1:0 to simulate water near 48C. The range
of o was 0:01RoR10:0:
To analyze the numerical data, it is advantageous to

deploy the following notation:

f� � fÿ f0

f0

, �5�

A�f� � max
�
f�t�	ÿmin

�
f�t�	

2
for t0RtRt0 � 2p

o
,

In the above, f stands for an arbitrary physical vari-
able, and f0 denotes the case of the non-oscillatory
�e � 0� temperature condition at the wall. In Eq. (5),Fig. 1. Flow con®guration.
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A�f� indicates the amplitude of f for the oscillatory
temperature condition at the wall �e 6�0�:
The total heat transfer across a vertical plane (X =

const.) is represented by the Nusselt number Nu, i.e.,

N �
�Ar
0

�
Uy�RaPr�1=2ÿ @y

@X

�
dZ �6�

As remarked earlier, emphasis is placed on the features
in the quasi-periodic state; the transitory behavior
from t � 0 to this state is of no direct interest.

The cases of oscillating wall temperature �e 6�0�
are considered. As the right-wall temperature varies
sinusoidally in time with frequency o, the correspond-

ing density at the right wall changes also in a sinusoi-
dal form with frequency o (see Fig. 2(b)) for a
Boussinesq ¯uid. However, it is important that, for a

non-Boussinesq ¯uid with a quadratic density±tem-
perature relation, Eq. (1) with TH � TM, the time-vari-
ation of the density at the right wall is periodic with
an e�ective frequency 2o:
Now, the numerical results for e � 1:0 are scruti-

nized. Note that the corresponding density ¯uctu-
ation at the hot wall is appreciable, i.e., e 2 � 1:0: A
comprehensive series of computations were carried
out covering a wide range of o: Following the pro-
cedures adopted in Lage and Bejan [1], the ampli-

tude of ¯uctuating Nusselt number, A�Nu��,
spatially averaged over the mid-plane X � 0:5, is
monitored. Fig. 3(a) exempli®es the plot of A�Nu��
versus o: Clearly, the results for A�Nu�� display the
primary peak at or1 � 0:62 and the secondary peak
at or2 � 0:32: The value of A�Nu�� at the primary
peak is substantially larger than the corresponding

steady-state �e � 0� Nu value. In accordance with
the assertion of Lage and Bejan [1], the presence of
these peaks of A�Nu�� manifests the existence of

resonance. When o < or2, A�Nu�� does not vary
much with o, and A�Nu�� is approximately 0.80 as
o takes very small values. This implies that, if the

wall temperature changes slowly, the system

responds as if the ¯uid is subject to a succession of

instantaneous steady-state boundary conditions. In

the other limit, as o exceeds or1, A�Nu�� falls o�

rapidly, and A�Nu�� is practically zero when or4:0:
The impact of high-frequency ¯uctuations of the

boundary conditions is con®ned to a narrow layer

adjacent to the wall, and the oscillatory nature is

not felt in much of the interior region. These quali-

tative observations on the in¯uence of the frequency

of wall-temperature pulsation are consistent with the

earlier ®ndings for a Boussinesq ¯uid [5±7].

The time-histories of Nu� at the mid-plane X � 0:5
are exempli®ed for four di�erent values of o in

Fig. 3(b). As expected, when o is large (see the curve

for o � 1:00), the pulsating part of heat transfer in the

interior diminishes. When o is at the primary reson-

ance frequency �o � or1 � 0:62), the pulsation of in-

terior heat transfer proceeds at frequency o with a

substantially magni®ed amplitude. The value A�Nu�� is
lower at the secondary resonance frequency �o �
or2 � 0:32� than at o � or1: At an even lower o (see

the curve for o � 0:10), A�Nu�� settles to a value

which is lower than that at o � or2: It is seen that, at

low pulsation frequencies, the ¯uctuating Nu��X�0:5-
curves contain the component of frequency 2o in ad-

dition to the primary component of frequency o: It is
recalled that, under the quadratic density±temperature

relation of Eq. (1), a wall-temperature pulsation at fre-

quency o brings forth a wall-density oscillation at fre-

quency 2o: The pulsation of Nu��X�0:5 at 2o is

indicative of the afore-said density-¯uctuation at 2o:
The in¯uence of 2o-components is meager in the case

of moderate- and high-frequency oscillations (see the

curves of o � 1:00 and o � 0:62 of Fig. 3(b)). As

stressed earlier, the e�ect of high-frequency pulsations

of the boundary conditions can not penetrate into the

bulk of the interior. Note that, for o moderate or

large, such as o � 0:62 or o � 1:00, 2o falls in the

high-frequency regime in the present range of par-

ameters.

Fig. 2. Periodic behavior of the pulsating conditions at the wall (X = 1.0). (a) Temperature, (b) density for a Boussinesq ¯uid, (c)

density for a non-Boussinesq ¯uid of Eq. (1).
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Kwak and Hyun [5] argued that resonance occurs
when the system resonates to the characteristic fre-

quency. For the buoyant enclosed ¯uid, this frequency
is identi®ed to be the basic mode of internal gravity os-
cillations which are supported by the prevailing den-

sity-strati®cation in the interior. To the lowest-order
approximation, the interior ¯uid can be assumed invis-
cid for large Ra. It follows that the frequencies of in-

ternal gravity oscillations can be calculated by
estimating the vertical gradient of density in the in-
terior [13]. Speci®cally, for a square cavity, Kwak and

Hyun [5] and Kwak et al. [6,7] adopted a formula for
the basic mode N1 of internal gravity oscillation [13]:

N1 � Ci���
2
p : �7�

In the above, Ci represents the mean vertical gradient

of density in the interior region. For the parameter set
of Fig. 3, a curve-®tting to the computed data of aver-
age values of density gradient at X � 0:5 yields

Ci � 0:8706, which, upon substitution into Eq. (7),
leads to N1 � 0:62: Resonance is expected when the
pulsation frequency o matches N1, which points to the

primary resonance frequency o � N1: This prediction
is in close agreement with the numerically-determined
value or1 � 0:62: It is emphasized that the presence of
the secondary resonance frequency is a unique feature

of a non-Boussinesq ¯uid of Eq. (1). As explicitly
stated, due to the quadratic nature of temperature±
density relationship, the wall-temperature pulsation at

o causes the wall-density ¯uctuation at 2o as well as
at o: Consequently, resonance is also anticipated when
the e�ective frequency 2o matches N1,

i.e.,o � N1=2 � 0:31: This predicted value of secondary

resonance frequency is in broad agreement with the

numerical result of or2 � 0:32: Minor discrepancies are

attributed to the uncertainties in numerical ®tting and

to the fact that the system is not strictly inviscid,

among others. These exercises provide further justi®ca-

tion to the above physical interpretation in predicting

the resonance frequencies based on the notion of in-

ternal gravity oscillations. Also, the existence of the

secondary resonance frequency is identi®ed to be a

manifestation of the e�ect of a non-Boussinesq ¯uid.

4. Conclusion

Comprehensive numerical results demonstrate the

existence of resonance in the present buoyant convec-

tive system. The primary resonance frequency or1 is

shown to match the basic mode N1 of internal gravity

oscillations. The presence of secondary resonance fre-

quency or2�� N1=2� is peculiar to the non-Boussinesq

¯uid. Due to the quadratic density±temperature(r±T�
relationship, the e�ective pulsation frequency for den-

sity at the wall contains 2o in addition to o: The

above physical interpretations are supportive of the

argument of Kwak and Hyun [5]. It has been asserted

that resonance is expected when the fundamental

characteristic frequency of the system is excited, which,

in this case, is identi®ed to be the internal gravity

mode.

Fig. 3. Behavior of Nu at the mid-plane X = 0.5. (a) Amplitude of ¯uctuating part, A�Nu�), versus o, (b) time history of Nu �.
(- - -), o � 0:1; (ÐÐÐ), o � 0:32; r, o � 0:62; (± � ± � ±), o � 1:0:
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