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1. Introduction

Time-dependent buoyant convection in an enclosure,
induced by the periodically-varying boundary con-
ditions, has attracted attention in recent years. An im-
portant task is to describe the responses of buoyant
fluid system to the oscillatory thermal boundary con-
ditions. One example is the air-conditioning system for
a room; the thermal load often changes periodically on
a daily basis. Of great significance is the existence of
resonance. The reports by Lage and Bejan [1] and
Antohe and Lage [2], among others, demonstrated that
the buoyancy-driven convective system resonates to
certain discrete frequencies of the pulsating heat flux at
the boundary wall. Under resonance, the amplitude of
the fluctuating total heat transfer rate through the ver-
tical mid-plane of the cavity is shown to be maximized.
These accounts provided a theoretical estimation of
the peak resonance frequency by matching the period
of the pulsating heat flux at the wall to the period of
the system-wide circulation (flow wheel) of the
enclosed fluid. The subsequent experimental efforts
[3,4] established that the resonance frequency thus
obtained was in order-of-magnitude agreement with
the measurements.
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In related endeavors, Kwak and Hyun [5] and Kwak
et al. [6,7] argued that resonance is expected to occur
when the internal gravity waves are excited. Kwak et
al. [6,7] ascertained that the resonance frequency calcu-
lated by using the basic internal gravity mode was in
close agreement with the numerical solutions to the
Navier—Stokes equations.

It is noted that all of the previous studies invoked
the assumption of a Boussinesq fluid, in which a linear
density—temperature relationship is stipulated. How-
ever, if the temperature range of the system straddles
the temperature 7y at which the density of the fluid
reaches the maximum, the conventional Boussinesq-
fluid assumption has to be abandoned. For example,
for water, the density—temperature relationship in the
vicinity of Ty (=3.98°C) can not be modeled by a lin-
ear function.

In the present note, numerical investigations are
made of the response of fluid in a square cavity when
the temperature at one vertical wall oscillates about
Tv under the non-Boussinesq-fluid approximation.
The crux is that, when the wall temperature oscillates
about Ty at frequency w, the corresponding density at
the wall oscillates effectively at frequency 2w, since the
density, being maximum at 7Ty, decreases as the tem-
perature T deviates from Ty both for 7> Ty and T <
Tv. Consequently, it will be shown that resonance is
anticipated when the basic internal gravity mode N; is
matched to w as well as the effective forcing frequency
2w. This is in contrast to the case of a usual Boussi-
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nesq-fluid in which resonance is seen when N; is
matched to w.

2. The model and numerical computations

A square cavity, filled with a fluid, is sketched in
Fig. 1. The top and bottom horizontal walls are insu-
lated. The temperature T¢ at the cold left vertical wall
at X =0 is constant. The temperature 7y at the hot
right vertical wall at X = L varies sinusoidally in time,
Tu=Ty + AT’ sin ft, in which the cycle-averaged value
Ty =Tc+ AT, AT >0, and the amplitude and fre-
quency of oscillation are, respectively, AT’ and f. In
the present problem setup, Ty is equal to the density—
maximum temperature 7y. In accordance with the
suggestion of Moore and Weiss [§8], in the vicinity of
Twm, a parabolic function linking density and tempera-
ture is selected:

p = pull = BT - Tw)?] (1)

In the case of water, the error associated with Eq.
(1), with f=28.0x 10~° (°C)™2, and Ty = 3.98°C, is
smaller than 4% from 0 to 8°C, and the temperature
range of the present problem is supposed to lie within
these bounds. The other physical properties of the
fluid are taken to be constant at 7.

The governing time-dependent Navier—Stokes
equations incorporating Eq. (1), in properly non-
dimensionalized form, were given previously (e.g., in
Kwak et al. [9]) and, due to page limitations, they are
not reproduced here.

The principal non-dimensional quantities are defined

as
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Fig. 1. Flow configuration.

where ¢ and w are non-dimensional amplitude and fre-
quency of temperature oscillation at the sidewall, re-
spectively.

The Rayleigh and Prandtl numbers are defined as

— 2 3
Rz PETu=T) L
VK

1l
=<

b (3)

where v and x are kinematic viscosity and thermal dif-
fusivity, respectively.

It is noted that time is made dimensionless by refer-
ring to the Brunt—Vaisala frequency N based on the
temperature contrast (TH —To), 1e.,

1/2
N= [ﬁg(TH - TC)z} _ (RaPn)"k (4)

- L R
As easily understood, the internal gravity waves are
characterized by the prevailing buoyancy, which is
depicted by the Brunt—Vaisala frequency, expressed in
Eq. (4). Therefore, the nondimensionalization of time
by using 1/N is a natural choice, and this led to a suc-
cessful identification of the resonance frequency in [5—
71.

The finite volume method was used to secure nu-
merical solutions to the governing equations, following
the procedures of SIMPLER algorithm [10]. The
QUICK scheme [11] was utilized to discretize the non-
linear advective term. The specifics of the numerical
techniques were amply discussed in many prior publi-
cations [5]. Most of the calculations were conducted by
deploying a mesh network of (62 x 52) staggered grid
points in the (x—z) domain. The grid and time-step
were varied for repeated calculations of several exemp-
lary flows of Nishimura et al. [12] and Kwak and
Hyun [5], and the computed results for Nu were
mutually consistent within an accuracy of 1%.

3. Results and discussion

For all the results reported here, Ra = 107, Pr =
11.573, Ar = 1.0 to simulate water near 4°C. The range
of w was 0.01 <w<10.0.

To analyze the numerical data, it is advantageous to
deploy the following notation:

_b—

¢ %0 ®)

max{¢(t) } — min{¢(r)}
2

2
A(p) = for10§r§ro+—n,
o}
In the above, ¢ stands for an arbitrary physical vari-
able, and ¢, denotes the case of the non-oscillatory
(¢ = 0) temperature condition at the wall. In Eq. (5),
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A(¢) indicates the amplitude of ¢ for the oscillatory
temperature condition at the wall (¢£0).

The total heat transfer across a vertical plane (X =
const.) is represented by the Nusselt number Nu, i.e.,

N= JA'.[UH(RaPr)l/Z—a—Q} az
- X

0

(©)

As remarked earlier, emphasis is placed on the features
in the quasi-periodic state; the transitory behavior
from 7 = 0 to this state is of no direct interest.

The cases of oscillating wall temperature (e£0)
are considered. As the right-wall temperature varies
sinusoidally in time with frequency w, the correspond-
ing density at the right wall changes also in a sinusoi-
dal form with frequency w (see Fig. 2(b)) for a
Boussinesq fluid. However, it is important that, for a
non-Boussinesq fluid with a quadratic density—tem-
perature relation, Eq. (1) with Ty = Ty, the time-vari-
ation of the density at the right wall is periodic with
an effective frequency 2w.

Now, the numerical results for ¢ = 1.0 are scruti-
nized. Note that the corresponding density fluctu-
ation at the hot wall is appreciable, ie., 2 =1.0. A
comprehensive series of computations were carried
out covering a wide range of w. Following the pro-
cedures adopted in Lage and Bejan [1], the ampli-
tude of fluctuating Nusselt number, A(Nu*),
spatially averaged over the mid-plane X =0.5, is
monitored. Fig. 3(a) exemplifies the plot of A(Nu*)
versus . Clearly, the results for A(Nu*) display the
primary peak at w,] = 0.62 and the secondary peak
at w,, =2 0.32. The value of A(Nu*) at the primary
peak is substantially larger than the corresponding
steady-state (¢ =0) Nu value. In accordance with
the assertion of Lage and Bejan [1], the presence of
these peaks of A(Nu*) manifests the existence of
resonance. When o < w;;, A(Nu*) does not vary
much with o, and A(Nu*) is approximately 0.80 as
o takes very small values. This implies that, if the
wall temperature changes slowly, the system

eu'eH pH_p—H
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responds as if the fluid is subject to a succession of
instantaneous steady-state boundary conditions. In
the other limit, as w exceeds w,;, A(Nu*) falls off
rapidly, and A(Nu*) is practically zero when w>4.0.
The impact of high-frequency fluctuations of the
boundary conditions is confined to a narrow layer
adjacent to the wall, and the oscillatory nature is
not felt in much of the interior region. These quali-
tative observations on the influence of the frequency
of wall-temperature pulsation are consistent with the
earlier findings for a Boussinesq fluid [5-7].

The time-histories of Nu* at the mid-plane X = 0.5
are exemplified for four different values of w in
Fig. 3(b). As expected, when w is large (see the curve
for w = 1.00), the pulsating part of heat transfer in the
interior diminishes. When @ is at the primary reson-
ance frequency (@ = w,; = 0.62), the pulsation of in-
terior heat transfer proceeds at frequency w with a
substantially magnified amplitude. The value A(Nu*) is
lower at the secondary resonance frequency (w =
w;, =2 0.32) than at o = w,;. At an even lower o (see
the curve for w =0.10), A(Nu*) settles to a value
which is lower than that at w = w,,. It is seen that, at
low pulsation frequencies, the fluctuating Nu*]y_g s-
curves contain the component of frequency 2w in ad-
dition to the primary component of frequency w. It is
recalled that, under the quadratic density—temperature
relation of Eq. (1), a wall-temperature pulsation at fre-
quency o brings forth a wall-density oscillation at fre-
quency 2. The pulsation of Nu*]y_¢s at 2w is
indicative of the afore-said density-fluctuation at 2m.
The influence of 2w-components is meager in the case
of moderate- and high-frequency oscillations (see the
curves of w =1.00 and w =0.62 of Fig. 3(b)). As
stressed earlier, the effect of high-frequency pulsations
of the boundary conditions can not penetrate into the
bulk of the interior. Note that, for w moderate or
large, such as w =0.62 or w = 1.00, 2w falls in the
high-frequency regime in the present range of par-
ameters.
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Fig. 2. Periodic behavior of the pulsating conditions at the wall (X = 1.0). (a) Temperature, (b) density for a Boussinesq fluid, (c)

density for a non-Boussinesq fluid of Eq. (1).
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Kwak and Hyun [5] argued that resonance occurs
when the system resonates to the characteristic fre-
quency. For the buoyant enclosed fluid, this frequency
is identified to be the basic mode of internal gravity os-
cillations which are supported by the prevailing den-
sity-stratification in the interior. To the lowest-order
approximation, the interior fluid can be assumed invis-
cid for large Ra. It follows that the frequencies of in-
ternal gravity oscillations can be calculated by
estimating the vertical gradient of density in the in-
terior [13]. Specifically, for a square cavity, Kwak and
Hyun [5] and Kwak et al. [6,7] adopted a formula for
the basic mode N, of internal gravity oscillation [13]:

G

7
In the above, C; represents the mean vertical gradient
of density in the interior region. For the parameter set
of Fig. 3, a curve-fitting to the computed data of aver-
age values of density gradient at X =0.5 yields
C; =2 0.8706, which, upon substitution into Eq. (7),
leads to N; = 0.62. Resonance is expected when the
pulsation frequency @ matches Ny, which points to the
primary resonance frequency o = N;. This prediction
is in close agreement with the numerically-determined
value w,; =2 0.62. It is emphasized that the presence of
the secondary resonance frequency is a unique feature
of a non-Boussinesq fluid of Eq. (1). As explicitly
stated, due to the quadratic nature of temperature—
density relationship, the wall-temperature pulsation at
o causes the wall-density fluctuation at 2w as well as
at w. Consequently, resonance is also anticipated when
the  effective  frequency 2w  matches Ny,
i.e.,w = N;/2 = 0.31. This predicted value of secondary

N, = 7
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resonance frequency is in broad agreement with the
numerical result of w,, = 0.32. Minor discrepancies are
attributed to the uncertainties in numerical fitting and
to the fact that the system is not strictly inviscid,
among others. These exercises provide further justifica-
tion to the above physical interpretation in predicting
the resonance frequencies based on the notion of in-
ternal gravity oscillations. Also, the existence of the
secondary resonance frequency is identified to be a
manifestation of the effect of a non-Boussinesq fluid.

4. Conclusion

Comprehensive numerical results demonstrate the
existence of resonance in the present buoyant convec-
tive system. The primary resonance frequency w,; is
shown to match the basic mode N; of internal gravity
oscillations. The presence of secondary resonance fre-
quency w;»[= N;/2] is peculiar to the non-Boussinesq
fluid. Due to the quadratic density—temperature(p—7)
relationship, the effective pulsation frequency for den-
sity at the wall contains 2w in addition to w. The
above physical interpretations are supportive of the
argument of Kwak and Hyun [5]. It has been asserted
that resonance is expected when the fundamental
characteristic frequency of the system is excited, which,
in this case, is identified to be the internal gravity
mode.

(b)
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Fig. 3. Behavior of Nu at the mid-plane X = 0.5. (a) Amplitude of fluctuating part, A(Nu*), versus w, (b) time history of Nu™.
---)0=01—),w=032; A, »=0.62; (—-—--), »=1.0.
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